- 新增yolo_detect模块,包含backbone、nets、utils等组件 - 在模型配置中添加yolo_detect选项,支持新的检测模型 - 移除SAM3预处理相关代码和配置项 - 更新Dockerfile删除core目录下所有文件以减少镜像体积 - 修改worker服务移除图像标签预处理逻辑,直接进行模型检测
33 lines
1.3 KiB
Python
33 lines
1.3 KiB
Python
#--------------------------------------------#
|
||
# 该部分代码用于看网络结构
|
||
#--------------------------------------------#
|
||
import torch
|
||
from thop import clever_format, profile
|
||
|
||
from nets.yolo import YoloBody
|
||
|
||
if __name__ == "__main__":
|
||
input_shape = [640, 640]
|
||
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
|
||
num_classes = 80
|
||
phi = 's'
|
||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
m = YoloBody(input_shape, num_classes, phi, False).to(device)
|
||
for i in m.children():
|
||
print(i)
|
||
print('==============================')
|
||
|
||
dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
|
||
flops, params = profile(m.to(device), (dummy_input, ), verbose=False)
|
||
#--------------------------------------------------------#
|
||
# flops * 2是因为profile没有将卷积作为两个operations
|
||
# 有些论文将卷积算乘法、加法两个operations。此时乘2
|
||
# 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
|
||
# 本代码选择乘2,参考YOLOX。
|
||
#--------------------------------------------------------#
|
||
flops = flops * 2
|
||
flops, params = clever_format([flops, params], "%.3f")
|
||
print('Total GFLOPS: %s' % (flops))
|
||
print('Total params: %s' % (params))
|